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The problem regarding the distribution of temperatures is solved for
the case of a layer in which a combustion front is moving at a constant
speed, said front caused by the burnout of a fuel uniformly distributed
through the layer.

We are dealing here with a problem that is charac-
teristic of the heating of an agglomerated-chargelayer
in which a relatively uniformly distributed solid fuel
burns out with the passage of time.

Before the onset of fuel combustion, the layer is
first heated by a constant-temperature gas over a cer-
tain period of time adequate to achieve the stable igni-
tion of the fuel and to heat the layer through a speci-
fied depth. Subsequently, from the instant of time
taken as zero, air at a temperature T, is passed
through the layer, and it is in this flow of air that the
fuel is burned. The combustion front of the fuel moves
through the layer at a constant speed we in the direc-
tion of the air flow.

The speed of motion for the combustion front and
the law of heat generation in the combustion zone are
functions of the concentration of the reacting gas and
of its velocity, of the fuel concentration in the layer,
of the temperature, ete., and they can be determined
by solving a system of heat- and mass-transfer equa-
tions. However, this is an extremely complex prob~
lem. Here wewill consider a simpler case and, namely,
the case in which the velocity of the combustion front
and the heat-generation law in the combustion zone
are specified.

§1. Let us first consider the case in which the width

of the heat-generation zone is equal to zero, i.e., the
fuel burns out instantaneously. In this case, the initial
temperature of the material is equal to zero. We will
reckon the coordinate for the height of the layer from
the point at which the air enters the layer (x = 0).

To determine the temperatures of the gas and the
material in the layer, we have the following system of
equations:

L/ N L
£ 91 & Ox
— 0, (I'— 1) — ik (r—i), (1"
C
pc(l—p o =g, (T —1{) (29)
ot
with the boundary conditions
x:O, T=T0,
T=uxv, t=0. (31

It is assumed in the formulation of the problem that
the longitudinal heat conduction is negligibly small.

This condition is not always satisfied. If the material
is finely dispersed, we can apparently assume that

T = t, but the longitudinal heat conduction in the mate-
rial cannot be neglected [1]. Moreover, we assume
that the volume of the gases in passage through the
combustion zone does not change, and that the poros-
ity is constant in time and through the height of the
layer. In first approximation these conditions are ac-
ceptable, since it is assumed that the quantity of fuel
in the layer is small in volume (for example, for an
agglomerated charge the quantity of fuel in the layer
does not exceed 10% by volume).

Let us introduce new variables and, namely, we
will reckon the time at each point through the height
of the layer from the instant at which this point is
reached by the gas entering the layer at the instant
7=10:

x

=T ——.
v

The system then assumes the form

T cypefv
T o a,
=7t — Gk 6[11—)6 ( i —iﬂ, (1)
a, w, v
o ee(=h o @
aTl a,
with the boundary conditions
71=0, =0,
X = 0, T = TO‘ (3)

We will apply the Laplace transform with respect
to 71; we obtain the images

dT g0y f

Sfﬁ(_l_ﬂ —T —7. (4)

Let us turn to the new variables

K T
v, 05 pc(l—p
The solution of system (4) for T will be
_ T y
T=— exp (—y+ 1 +s)+

(5)
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Fig. 1. Temperature distribution of gas (1)

and material (2) along bed height at various

time instants at N > 1 (a) and N < 1 (b) (fig-
ures on curves show value of z),
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Fig. 2. Temperature distribution of gas (1) and material
(2, 3) along bed height (N < 1): 1, 2) regular heat gen-
eration (¢(8) = 1/8,); 3) heat generation according to
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Teel—h =D+ 41"
— A —
X{exp( y+l+s) exp ( yNs)],
where

chpgf Wr

i 1
pc(l—f) ( w, v ) pc(l—Pw, Wy’
since v >> w,.

Hence we can see that the solution is the sum of two
solutions, one of which is the solution for the problem
relating to the heating of a nonmoving layer by a gas
with an initial zero temperature Ty; the second solu-
tion is the one formulated for the problem involving
a gas temperature equal to zero at the inlet.

Since we know the solution of the first problem [2],
we will seek the preimage only for the second term
(T ta).

After simple transformations, for this we will ob~
tain

ot | {exp—v—p)
T, — ik __)jepl—T—y
po(l—D M o1t (6)
T 1
exp ’—y ———z(l —~-—)]]
N N/
T NI —N) X

XIO(QV?T)dT_‘

N —exp[— (z—yN)(l -—LN):I}
e

NV=1)

— Ty (Z _yN) {
+exp(—z—y) ﬂ@l
N

Here oy{z — yN) is the unit impulsive function [3]

0 for z<yN,

(D
I for z>yN.

oz — ) = |

We see from (6) that the gas temperature exhibits
a discontinuity at the point z = yN, Experiencing a
rise in temperature in passage through the charge
layer and cooling off after passage of the combustion
front through the layer, the gas exhibits a jumpwise
rise in temperature at the front by an amount Q(fk/
/pc(1l — )N, and the temperature of the gas then falls,
since the heat is expended on the heating of the charge
approaching the combustion front.

The temperature of the gas at the combustion front
(after the burning up of the fuel) will be

Qik

T Sei=p ©
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It can be demonstrated that as z approaches infin-
ity the temperature of the gas at the combustion front
is given by

fmT =1 (9)
] pc(l—fH N—1
fimT = — & L (10)
o pe(l—p N(I—N)

It is easy to see that these temperature values corre-
spond to the conditions of a steady-state counterflow.
Let us now determine the temperature of the mate-
rial. For this we will use Eq. (1), but in dimension-
less form
ar Qs

Ty ST T vei=n

Here we employed the property of the delta function

[4]

§(z—yN). (1%

6(ax)=£(—x)—.
fa]

In the differentiation of Eq. (8) we used the formula

4 6, (z—yN) = — N8 (@z—yN).
dy

Finally, for the charge temperature we have

t ——-———~“Qcik X
P ope(1—h
{Sz exp(—g — 1) exp[——y——z~—jlv—(-c——z)]]
xWI—y 1 T Rmg=m X

X1 @2V yT) ]/i— dv+
LV ),/ z
+exp(__y_z)_lgwl/,y_2)l/%_

1 —exp [~(z ~yN)(1 —TIV“)J} (11)
N1 '

— 6 (z — yN)

We see from this expression that the charge-tem-
perature function is continuous, since the multiplier
for gy(z — yN) at the point z = yN vanishes.

The results from the numerical calculations of Ty
and ty for N >1 and N < 1 are shown in Fig. 1.

§2. In actual processes the liberation of heat does
not occur instantaneously, but in proportion to the
burning out of the fuel particles. Consequently, the
combustion (heat generation) zone is finite in width
(A).
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The solution of this problem may be regarded as a
superposition of solutions with sources in the form
of delta functions which depend on the variable 8, with
respect to which the summation (integration) is car-
ried out,

Thus we first have to find the solution of the follow-
ing problem (we write the equations in dimensionless
form):

ar Qi
——— =Tt bz—yN —BN,), (12)
dy pc(l—J)) IN—B)
ot
=T, (21
dz )
z2==0, t=0, y=0, T=0. (3m)

In the following we will assume that Ny = N, since
the velocity of the gases is considerably greater than
the speed at which the combustion front is moving.

Let us note that the §-function written in dimen~

sional form
s (T _ _i‘ifg)
wC

indicates that the heat generation at the point x = 0
does not begin at the instant 7= 0, but somewhat later
and, namely, at the instant 7 = xy/wg.
On application of Laplace transforms, Eqgs. (12)
and (2) assume the form
dar = 7 Qik
72 ()

st=T—T1. (13)

exp (— yNs — B Ns),

Having solved (13) for T, we finally obtain

T:Lﬁkw exp (—p Ns — yNs) —
pe(l—f)
_exp[——ﬁNs~y(1~ I —lf—s)] }x
1 ! Ns n
X __1—}—8_‘ ' (14)

This expression differs from (5) only in the multi-
plier exp(—pNs), and, consequently, the original (ac-
cording to the displacement theorem) will be

Qk [ exp(—y—
T(ﬁ)=m{%(z—ﬁN) j [%ﬂk
]
exp[—y~—r—(z—@N)(1~—l~)JJ
+ N2 (1—N) x
xI,2v yrydt—

~—0,(z—pN —yN)x

[N—wxp[—(z“yN_ﬁN) (1 —Jﬁ)]jl+

x NV —1)

215
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X Mﬂ%ﬂ X {15)

If the generation of heat begins at 1= 0, i.e., 8=
= 0, we obtain (6).

However, if the heat generation occurs uniformly
in a zone of thickness 64 (6; = onA/vcgpgf), the gas
temperature is defined as the following integral:

8

T=jT(ﬁ) ‘? ‘ (16)

0

In calculating the gas temperature from (16) and
(15), we use the following formulas:

[}
ff(z~ﬁN>oo(z—sN)dﬁ=
0
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0

and
8
X Goe—BN — yN) iz —B N —yN)dp =
0

z—yN

— - aE—M) jf(s)de—
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—— G == N) Feyde. (17

0

Substituting (15) into (16) and using (17) and (177),
we finally obtain
Qik
= X
pe(I—fN 8,
z2—N

x{ao(z—alN) y

0
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For the case of a source in the form of a delta func-

tion in Eq. (12), i.e., for system (12)—(2"), we oh-
tain the temperature of the material in the following
form:

2N
U LS PP T G o Ll k)
) = {%(Z 20 { o=

1 i
ool v oo [1-4)]
N ! N N )J %

‘ N{I—M

X L @2Vy) ‘/:;: dv+
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1
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For the case of heat generation in a zone of width
84 in analogy with (16) we obtain

t=§t<ﬁ)~”é—5—. (20)
6 1

After the calculations we will have

pe(l—f6N
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Figure 2 shows the results from the calculation of
the gas and material temperatures for a heat-genera-
tion zone of finite width for a single instant of time
(N < 1).

In principle, it is possible to calculate the tempera~
ture field in the layer for any heat-generation law ©(8)
over the width of the zone, but for this we must have

81
[e@adp=1. (22)

0

From (22), given uniform heat generation in the
zone, we have

@ (P) = const = L .
8

In the general case, if we represent ¢(B) as propor-
tional to g1, from (22) we have

R
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and the gas temperature will be

61
7=t fT(ﬁ)ﬁﬂdﬁ.
1]

e

The temperature of the material is determined in
analogous fashion.

Figure 2 shows the temperature curve for the ma-
terial through the height of the bed in the case of heat
generation proportional to the distance from the lead-
ing edge of the zone. We see from the figure that the
temperature maximum is more pronounced in this
case; in front of the heat-generation zone the tempera-
ture is higher than the temperature in the case of uni-
form heat generation; beyond that zone, however, it
is lower.

§3. In the general case, when the layer was heated
prior to the onset of the process of fuel burnout so
that when z = 0, t = f(y), and the air enters the layer
at a temperature Ty, the solution will be the sum of
the familiar Nusselt solution [5] and the one derived in
§2.

NOTATION

T and t are the temperatures of the gas and mate-
rial; § = Tpe(l ——f)/Q‘ik and ¢ = tpe(l — f)/Qfk are
the dimensionless temperatures of the gas and mate~
rial; x is the bed height; 7 is the time; cp is the heat
capacity of the material; CgP is the heat capacity of
the gas; f is the porosity of the bed; v is the gas ve-
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locity in the bed; wg is the velocity of the burning
front; W, and Wy, are the water equivalents of the gas
and material; ay is the volumetric coefficient of heat
transfer between the gas and material; QY is the calo-
rific value of the fuel in the bed (with account for its
burnout ratio and heat flow rate for structural trans-
formations); k is the fuel concentration; 6(1 — x/w,

is the delta-function; y = ayx/icgpef (8 = ayXe/vegpgf)
is the dimensionless height; z = ay7y/pc(l — f) is the
dimensionless time; IV(Z(yT)i/Z) is the modified Bessel
function of the first kind, of order v; A is the width of heat
generation zone; 0y = ayA/vegpgf is the dimensionless
width of the heat generation zone; @(g) is the law of
heat generation over the zone width.
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